Euclidean Commute Time Distance Embedding and its Application to Spectral Anomaly Detection
نویسندگان
چکیده
Spectral image analysis problems often begin by performing a preprocessing step composed of applying a transformation that generates an alternative representation of the spectral data. In this paper, a transformation based on a Markov-chain model of a random walk on a graph is introduced. More precisely, we quantify the randomwalk using a quantity known as the average commute time distance and find a nonlinear transformation that embeds the nodes of a graph in a Euclidean space where the separation between them is equal to the square root of this quantity. This has been referred to as the Commute Time Distance (CTD) transformation and it has the important characteristic of increasing when the number of paths between two nodes decreases and/or the lengths of those paths increase. Remarkably, a closed form solution exists for computing the average commute timedistance that avoids running an iterative process and is foundby simply performing an eigendecomposition on the graph Laplacianmatrix. Contained in this paper is a discussion of the particular graph constructed on the spectral data for which the commute time distance is then calculated from, an introduction of some important properties of the graph Laplacian matrix, and a subspace projection that approximately preserves the maximal variance of the square root commute time distance. Finally, RX anomaly detection and Topological Anomaly Detection (TAD) algorithms will be applied to the CTD subspace followed by a discussion of their results.
منابع مشابه
Robust Outlier Detection Using Commute Time and Eigenspace Embedding
We present a method to find outliers using ‘commute distance’ computed from a random walk on graph. Unlike Euclidean distance, commute distance between two nodes captures both the distance between them and their local neighborhood densities. Indeed commute distance is the Euclidean distance in the space spanned by eigenvectors of the graph Laplacian matrix. We show by analysis and experiments t...
متن کاملNonparametric Spectral-Spatial Anomaly Detection
Due to abundant spectral information contained in the hyperspectral images, they are suitable data for anomalous targets detection. The use of spatial features in addition to spectral ones can improve the anomaly detection performance. An anomaly detector, called nonparametric spectral-spatial detector (NSSD), is proposed in this work which utilizes the benefits of spatial features and local st...
متن کامل3D Gabor Based Hyperspectral Anomaly Detection
Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the wort...
متن کاملOnline Anomaly Detection Systems Using Incremental Commute Time
Commute Time Distance (CTD) is a random walk based metric on graphs. CTD has found widespread applications in many domains including personalized search, collaborative filtering and making search engines robust against manipulation. Our interest is inspired by the use of CTD as a metric for anomaly detection. It has been shown that CTD can be used to simultaneously identify both global and loca...
متن کاملCADDeLaG: Framework for distributed anomaly detection in large dense graph sequences
Random walk based distance measures for graphs such as commutetime distance are useful in a variety of graph algorithms, such as clustering, anomaly detection, and creating low dimensional embeddings. Since such measures hinge on the spectral decomposition of the graph, the computation becomes a bottleneck for large graphs and do not scale easily to graphs that cannot be loaded in memory. Most ...
متن کامل